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1. Abstract
Progress has been made on understanding the complex behavior of physical processes described

by nonlinear ordinary and partial differential equations through the use of singular perturbation

methods. Modulation equations for the amplitude and phase of dissipatively perturbed strongly

nonlinear oscillators and traveling waves have been derived from the action equation using the usual

method of multiple scales. Equivalent results have been obtained using the method of averaging

developed for the first time for a nonlinear partial differential equation, the Klein-Gordon equation,

describing dispersive waves. In another study, Whitham's averaged Lagrangian principle has been

generalized to account for arbitrary perturbations of the initial conditions. In other work, Bourland

and Haberman analyzed the slow crossing of an unperturbed homoclinic orbit (separatrix) for

dynamical systems. Solutions in the neighborhood of the separatrix are matched to the nonlinear

slowly varying oscillations, resulting in the determination of accurate analytic formulas for the

boundaries of the basin of attraction and connection formulas across the separatrix for the amplitude

and phase. Under current investigation are generalizations of the slow crossing of a separatrix to

arbitrary Hamiltonian systems and to nonchaotic situations in which small periodic forcing causes the

existence of an infinite sequence of resonance layers that coalesce on the separatrix.



2. Status of Research
During the period of the first NSF grant (1985-87), research on two problems was completed:
1. The leading tail of solitary waves for the Korteweg-de Vries equation [10]
2. Structure of two-dimensional diffusive shock waves [1]

In addition, preliminary work began on two problems:
1. Crossing of a separatrix (see subsequent discussion)
2. Nonlinear penumbral caustics [7]

We will present a brief summary of our results since 1987 on the following two related problems:
1. Phase shift for perturbed strongly nonlinear oscillators and dispersive waves

(summarized in greater detail in [15])
2. Analytic formulas for capture:

the boundaries of the basin of attraction and the slow transition across a separatrix
(summarized in greater detail in [13]).

Other completed work concerns slowly varying traveling waves for reaction-diffusion equations [16].

Major efforts continue on the crossing of a separatrix. An investigation ([A] with E. Ho) has begun on
general Hamiltonian systems under quasi-autonomous dissipative perturbations. So far it has been
shown that all of the work of Bourland and Haberman on separatrix crossing can be extended to the
more general case. Formulas for the phase shift have been determined. Accurate criteria for capture
has been obtained, that is, similar analytic formulas exist for the perturbed boundaries of the basin of
attraction. Numerical computations have motivated an asymptotic investigation of higher order
corrections to the usual Melnikov energy bounds. Preliminary work has also been done on the
Hamiltonian system that describes the usual weakly nonlinear resonance. An additional investigation
([B] with J. Brothers) has begun on the effect of small periodic perturbations on strongly nonlinear
oscillatory dynamical systems with double-well potentials. The object is to extend the ideas of
Bourland and Haberman for the crossing of a separatrix by including a small but fast periodic forcing.
Chaos can result (with a corresponding fractal boundary of the basin of attraction), but our interest
will be on the nonchaotic behavior preliminary to the larger amplitude bifurcation to chaos. The usual
slow variation procedures fail at each resonance band where the forcing frequency is a fractional
multiple of the nonlinear natural frequency. There are an infinity number of such subharmonic
resonance bands that coalesce on the unperturbed homoclinic orbit. We have carefully calculated the
strongly nonlinear oscillations away from each resonance using multi-phase averaging. In addition we
have calculated the solution in each resonance layer and matched the solution across each resonance
layer in order to calculate the phase shift. The forcing amplitude acts as a bifurcation parameter. For
sufficiently small amplitudes (the ones we wish to study at first) subharmonic resonant periodic
solutions do not exist and the solution merely makes a slow passage through resonance (called transient
resonance). The more frequently studied case of sustained resonance where periodic solutions _. ists will
not be particularly harder to analyze, but we still restrict our attention at first to the more elementary
case. A separate analysis in the neighborhood of the unstable periodic solution will be necessary but
will be quite similar to the analysis of the homoclinic orbit or separatrix of an unstal e fixed point as
performed by Cary, Escande, and Tennyson and looked at in more detail by Bourland and Haberman.
We are planning to do this type of analysis so that the near homoclinic solution can be matched to the
slowly varying solution away from the homoclinic orbit. Again, great care must be entertained since
the subharmonic resonance bands coalesce on this homoclinic orbit. We hope to obtain formulas for
the boundaries of the basin of attraction in the case in which the solution is not chaotic. We anticipate
that a proposal to continue work on this project will be forthcoming in early Fall 1992.



3. Ph . Shift. for, erturbed Strongly Nonlinear Oscillators
anouispersve Waves

1. Method of multiple wcales. Modulations of traveling waves for nonlinear partial differential

equations can be obtained by the method of multiple scales in which the solution is assumed to depend
O(X,T)

on a fast phase 10 - C- + O(X,T) and the slow variables X = c x and T = c t, where qO(X,T) is

the phase shift. To leading-order, a nonlinear ordinary differential equation in the traveling wave

coordinate 0 is obtained, from which one derives the local amplitude dependent dispersion relation. At

0(c) in the perturbation expansion, L(ul) = R1 , where L is the linearized operator and R1 is the

corresponding nonhomogeneous term. Eliminating the secular terms yields the leading-order wave

action equation. It is more difficult to eliminate secular terms from the O(e2 ) equation, L(u 2 ) = R2,

but in [3] it was shown that the resulting solvability condition determines the phase shift. It was also

shown there that an easier way to derive the phase shift equation is based on Whitham's exact

equation for wave action:

where I is the exact wave action, Q its flux, and D its dissipation. If a perturbation expansion is

introduced (I = I0+c1l+..., Q = Q0 +cQI+..., and D = D0+cDI+...), then the amplitude parameter E

is determined by _ 10 + L = - Do. Evaluating the exact wave action equation to O(c) yields

5bT 1I + Sy QI =-D I .  (1.2)

11, Q1, and D1 depend on u1 (the higher order perturbation of the solution). However, if the O(C)

perturbation is purely dissipative, then in [3] it was shown that O(c) perturbations of wave action, its

flux, and its dissipation are only due to perturbations of the wave number k and frequency w:
1

f )(10), Q1 = (Q0 ), and D1 = )(D 0 )+ fg u0 do, (1.3)

where DW 1, + k T- + X- ykk- is the linearized operator corresponding to a Taylorsere I- w l nd k The term 1 2

series in w and k. The term fJg u0 do represents the dissipation due to the 0(, 2 ) perturbation.
0 0

Thus, the higher-order wave action equation yields a linear PDE for the phase shift:

1
Q) (1.4) O a o490 a

W+T a 0)+JX- yy Qo +_ Do +-~ D). jguodo,(14... W0 A 0k Xat O
0

generalizing earlier work on ordinary differential equations ([2] and [6]). For non-purely dissipative

perturbations, the governing equation must be slightly modified.

2. Lagrangian formulation. In [51 it was also shown that the phase shift can be determined this way

for perturbed nonlinear partial differential equations formulated in terms of a Lagrangian:
7_.I N 2 _L3 -h -c 2 g, (2.1)
we =

where the Lagrangian satisfies L = .L (ut,Ux,U;X,T) and, for example, L1 stands for the partial



derivative of L with respect to the first argument ut. Whitham showed that the modulation equations

correspond to the exact conservation of wave action modified by the inclusion of dissipation:

--- TL + Cxk - D, (2.2)

1
where L is the averaged Lagrangian L = f L do. Leading-order wave action determines the amplitude

in the well-known way(- '9 0 + '9 OZ - - Do ). For purely dissipative 0(c) perturbations,

(1.3) were again shown to be valid in [5] so that the next order of the wave action equation becomes:

a ' + k = -f (Do) - fg u0  do, (2.3a)

where D) OT + OX y-- . Thus, the phase shift 4' satisfies the following linear partial

differential equation written in terms of partial derivatives of the averaged Lagrangian:

1
49 40 9 _OL 9 u o (2.3b)-f1 w ZX 'XLk) + jx-o aT k+  £ kk ) = L Do -9"xD f

Similarly, the phase shift was obtained in (5] for strongly nonlinear multi-phase oscillatory waves.

3. Korteweg-de Vries equation. In [41 these ideas were applied to oscillatory single-phase solutions of

the Korteweg-de Vries (KdV) equation. Since there are two amplitude parameters, there are two exact

action equations, each of which can be utilized. The modulation equations for the phase shift can be

obtained, but consists of a coupled system of two linear partial differential equations in two unknowns

since only one amplitude parameter can be eliminated using the dispersion relation.

4. Generalization to two fast scales. The usual method of multiple scales assumes the perturbations

are slowly varying traveling waves. This puts a severe restriction on the perturbations of the initial

conditions. To overcome this restriction, in [12] a method of multiple scales was developed with two
0(X,T)

fast scales, the usual traveling wave coordinate and time (o = - + O(X,T) and t = t) and the

usual two slow variables (T = c t and X = c x ). It has been shown that the partial differential

equation (2.1) is equivalent to an exact equation of wave action:

0 + Ik -D, (4.1)

where the Lagrangian is now averaged over time as well as the phase:

t t 1

lim I fLdt = lim l  i Ldodt; (4.2)

0 0 0

it is the time average of the usual averaged Lagrangian. When the wave action equation is evaluated

to leading order, the usual equation for the wave amplitude results. To evaluate the wave action to the



next order requires knowledge of the perturbation of the solution u1 . Here, uI = U 1(0) + fil (,k,t). In

general the time dependence is difficult to obtain explicitly since it corresponds to the equations that

arise in analyzing the stability of the traveling wave. However, for the nonlinear Klein-Gordon

equation, the perturbed wave action I1 satisfies

t II b I)(I0)+--lim - (Uo flt-2wo Uo l ) db dt. (4.3)

11= D ( to) 0 ti I J ( 0u -w U 0  Vj)
0 0

In [12] we showed the limit in (4.3) vanishes due to the boundedness of ii1 (corresponding to the

modest assumption that the traveling wave is stable). Thus,

1 = bI) ; (4.4)

the time-dependent part of u1 does not contribute to perturbations of the wave action, its flux, and its

dissipation. Consequently, (1.4) or(2.3) is not altered when initial conditions are properly analyzed.

5. Method of averaging. For ordinary differential equations, methods of averaging (based on energy-

angle variables and near ientity transformations) have proved useful to derive the long time behavior

of perturbed periodic systems. Recently, a similar formalism has been introduced in [14] for oscillatory

dispersive wave solutions of nonlinear partial differential equations. Amplitude parameter E and angle

tk variables are introduced, motivated by the corresponding expressions derived by the method of

multiple scales. Two "energy" equations have been derived in terms of the appropriately defined wave

number k and frequency w, which are referred to as standard form for the amplitude equations:

A [k]t +4 k], = 1+ E2f 51

where A and B are related two-by-two matrices. The expressions for these matrices and the

perturbation terms can be found in [14]. Equations (5.1) form a hyperbolic system (which can be

shown to have characteristic velocities ±1c as does the pde). It has been shown that the traveling wave

assumption corresponds to ut= - wulo and ux=kukt, from which the standard form for the angle

equations has been derived:

t= - + fO(kt,wtkx,wx) + cfl + c2 f2  (5.2a)

ix= k + g0(kt,wt,kx,wx) + fg1 + C2 g2" (5.2b)

Detail expressions for f0 and go also appear in [14]. The four equations, (5.1) and (5.2), which involve

the three unknowns (k,w,t) are linear in spatial and temporal derivatives of k and w. They are well-

posed since the two consistency equations have been shown to be equivalent. Although these equations

appear complex, after the introduction of near identity transformations and averaging, modulation

equations for the amplitude, wave number, frequency, and phase shift have been derived [14] with some

effort which are equivalent to the ones. obtained by the method of multiple scales.



4. Analytic Formulas for Capture: the Boundaries of the Basin of
Attraction and the Slow Transition Across a Separatrix

1. Before capture: strongly nonlinear slowly varying oscillations. To determine the slow variation of a

nonlinear oscillator due to small perturbations, various techniques have been developed. It is well-

known that these asymptotic techniques fail if the trajectory approaches an unperturbed homoclinic

orbit, the infinite period limit of a periodic solution. For Hamiltonian systems (without dissipation),

Timofeev, Neishtadt, and Tennyson, Cary, and Escande represented the solution in the neighborhood of

the unperturbed homoclinic orbit as a large sequence of nearly homoclinic orbits. They showed that

the action changed by a small, but important amount after the solution crossed the separatrix. We

have analyzed the slow crossing of a separatrix when small dissipation is present:

d2Y + Vy(y) = - ch*(y, (1.1)dt 2  d

where V is a double-well potential with a saddle point at y=O. We assume the perturbation is purely

dissipative, h*(y,- dy) = h*(y, L). With the inclusion of small dissipation, it is well known

that the two branches of the stable manifold are tightly wound (separating solutions captured in the

left well from those captured in the right). In [8] we analyzed the slow passage through a separatrix

due to dissipation using the method of multiple scales, determining the boundaries of the basins of

attraction and connection formula. Generalizations to slowly varying potentials V(y,et) and dissipative

perturbations h*(y,dy/dt,ct) are discussed in [9]. In [11] we used the equivalent method of averaging

with the energy E and angle 0 variables (easily related to the usual action-angle variables):

E= 1(dY 2 + V(y) and 1(E) = J2-[E dy (1.2a,b)
2 dt) Q(E) f ~Yrin Vyl2'

where Q(E) is the usual frequency. The following averaged equations were derived in [11] using a near

identity transformation, if the perturbation is purely dissipative:

de =(e - 3O(2 ( b+
dt c f(e) D(e) + O() and + (l.3ab)

where e is the average of E. We introduce a perturbation expansion, e=e0 +cel+ O(C2 ). The phase has

been derived in [2] using the method of multiple scales and in [11] using the method of averaging:

Ia--1 f f 0 dT+ Afl0 (T) + B +O(c), (1.4a)
0

where I 0 - f1(e 0 ). From a careful analysis of the initial conditions ([2] and [11]),

0(0)
B= 1  (f hyo0 dVb + initial perturbation of the physical energy E). (1.4b)

B0



The slow variation of the leading-order energy (equivalent to the usual action equation),

de0  CO D0(e,),

= -
follows for (1.3a). As the homoclinic orbit is approached (e0 - 0), 1/0 0 - c1 In I e0 I + c2 , where c2
is shown in [8] to depend on the entire potential. For captured oscillations in the right or left well, cR

-V/2A, where A is given by (3.1), and c2 is different in each case. The time Tc (when e0 = 0)

may be determined from (1.5). At this time, the corresponding phase follows from (1.4a).

2. Capture and the boundary of the basin of attraction. From (1.1), dE/dt = - ch* dy/dt. As the

solution approaches the critical energy (e0 - 0), the solution is composed of nearly solitary pulses. The

Melnikov result is that the energy decreases by eDR > 0 (cDL > 0) over a right (left) homoclinic while

over a complete (figure-eight shaped) pulse, it decreases by cDC = cD-DL. The last saddle approach

(see § 3) has positive energy, W0 > 0; the energy will become negative at the next saddle approach.

Since the energy will diminish by cDR on the next right homoclinic orbit (the well-known separation of

the two stable manifolds near the separatrix), the criteria for right capture is that 0 < W0 < cDR .

Corresponding initial conditions can be determined from slow variation theory, since when the Dhase is

an integer we ([8], and [11]) have shown that e0 of the method of averaging and the actual energy E

are sufficiently close near the separatrix. (At other phases, the difference is O(c), which is too large.)

Near the separatrix for the double-pulsed solution, the dissipation Do -- DR+DL, so that, from (1.5),

Ae0/Aob = - (DR+DL). We use the time of the last saddle approach (where the phase is an integer)

and the time Tc (where e0 =0 and the phase equals Oc). When the phase is an integer, e0 is

sufficiently close to the actual energy, which is W0 + 1 c DL using the Melnikov idea. Thus,
ro Dod I21

od 2 L=W+ DL c(D R + DL) Od, (2.1)

where oc Oc - [0j and where [0j is the integral part of Oc. By an appropriate integration of

(1.5), we determine the initial energy e(0) whose energy at the last saddle approach is W0:

Ie(0) 1D L + (W0) - 1 (0 )

1 dE ___1_hY0__d_ _2.2_

D0(E )  DR + DL D0(e(0)) 00 00  + v~~

where (here only) the perturbation of the initial energy (see(1.4b) is assumed to vanish. The

boundaries of the basin of attraction (for the right well) correspond to W0 = 0 and W0 = c DR.

3. Separatrix Region: a Sequence of Solitary Pulses. A transition region near the unperturbed

homoclinic orbit consists of a large sequence of solitary pulses (separated by a close approach to a

saddle point), as discussed for Hamiltonian systems (without dissipation) by Cary, Escande, and

Tennyson. The solution in the vicinity of a saddle point with energy Wn is
y ±IWnt(A (t),'

y = A sinh or cosh AV2(t-tn) ,  where A2 =--Vyy(O) > 0, (3.1)

A 2 mm m . .. . .



and where t = tn is the time of closest approach to the saddle. The energy dissipation depends on

whether the solution is nearly a right or left homoclinic orbit, Wnl-Wn =cDR or cDL. To determine

the time of the saddle approaches, we consider the approximate homoclinic orbit connecting two saddle

approaches occurring at t=tn - 1 and t=tn . The exponential growth specified by (3.1) must correspond

to the exponential decay (calculated in [8') of the tails o the corresponding solitary pulses. In this

manner, the "period" for a sequence of solitary pulses is the average of the periods for the surrounding

saddles: 1/2

tn -tn_1 = - l Wn Wn _ I +c, (3.2) 

where for left homoclinic orbits c2=c 
L in (3.2) ,while for right ones c2= c

R . It is not difficult to solve

(3.2) in terms of the unknown to using the basic property of the gamma function, r(x + 1) = xr(x).

4. Matching and the Connection Formulas Across a Separatrix. After the solution is captured into the

right well, we can insist that e0 be the unique solution of (1.5) which starts at the critical energy,

eO(TR) = 0, at some as yet unknown time T=TR= tR. The phase (see (1.4a) contains the second

constant O(TR). Using the same reasoning used to obtain (2.1), we derive O(TRp=W 0 /c DR -mod

Eliminating W0 from (2.1), yields DRO(TR) = C (DR+ DL) - DL, determining the captured phase

from initial conditions. The asymptotic expansion for nonlinear oscillators fails when e0 =O(.), i.e. as

the unperturbed separatrix is approached, suggesting the method of matched asymptotic expansions

(even though the energy is predicted correctly at extrema). Similarly, the sequence of solitary pulses

will fail when n=O(1/), since there the solution can no longer be ipproximated by homoclinic orbits.

We [81 have shown that the energy already matches to leading order before capture due to (2.1), which

determines W 0 . The careful matching [8] of the phase angles before capture determines the time to of

the last saddle approach. In the same manner, the phase angle near homoclinic orbits was matched to

the phase angle of the nonlinear oscillator after capture, determining the starting time TR = f tR:

F- W I +cl In ,l)L l D W cR wtR -tC -- D4D W°I D -2DR  2 2n 2 Rq 2 cL-( R - 2_,-C +- T -- D --

I e )sn - In (2r) +{ 1 In D (4.1)

2r(2- )sin 2 n 2 l ]T
where c, = cR-cL =2cR=-./2/A and Dc-DR+DL, completing the connection formulas for the slow

passage through the separatrix.
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